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Abstract

Permutation and randomization tests, despite their appealing nonparametric proper-
ties, are often dismissed as tests of an uninteresting and implausible null hypothesis:
the sharp null of no effects whatsoever. We dispute this characterization, showing
that one-sided permutation tests of the sharp null of no effects are conservative tests
of the much more general null hypothesis of non-superiority (or, alternatively, non-
inferiority), which states that all effects are weakly negative (or positive), thus allow-
ing for heterogenous effects. By inverting such a test we can form one-sided confidence
intervals for the maximum (or minimum) treatment effect. These properties also hold
for rank statistics and other effect-increasing test statistics. An especially useful exam-
ple is the Stephenson rank statistic, which is sensitive to large-but-rare effects and can
detect positive effects even when the average or median effect is negative. We show how
the non-superiority and non-superiority nulls are relevant to the detection of, respec-
tively, policy relevant and ethically relevant effects. We illustrate with a re-analysis of
a well-known field experiment in Benin.

∗Paper prepared for the summer meeting of the Society for Political Methodology, Rice University, Hous-
ton, TX, July 22, 2016.
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So long as the average yields of any treatments are

identical, the question as to whether these treatments

affect separate yields on single plots seems to be

uninteresting and academic. . . . [I]t is immaterial whether

any two varieties react a little differently to the local

differences in the soil. What is important is whether on a

larger field they are able to give equal or different yields.

Jerzy Neyman (1935, 173)

1 Motivation

Permutation tests, also known as randomization tests, were developed by R. A. Fisher as gen-

eral procedures for assessing hypotheses about treatment effects. Fisher (1935) demonstrated

that if treatment is randomly assigned to units, the hypothesis that no unit was affected by

treatment—the so-called “sharp null of no effects”—can be tested exactly with no further

assumptions by comparing an observed test statistic with its distribution across alterna-

tive permutations of treatment assignment. Thus, unlike likelihood or Bayesian methods,

permutation inference does not require parametric assumptions about the data-generating

distribution. Nor, unlike other nonparametric methods such as average treatment effect

(ATE) estimation, does it rely on asymptotic approximations with uncertain properties in

small samples.1 Rather, the validity of permutation tests depends only on assumptions about

how units were assigned to treatments.2

1. Welch’s unequal-variances t test, which is an asymptotically valid (specifically, conservative) nonpara-
metric test of the ATE, is often considered highly robust, even in moderately sized samples (e.g., n = 30;
on the conservatism of the Welch/Neyman variance estimator, see, e.g., Samii and Aronow 2012). But even
the t test can be quite inaccurate if the sample sizes differ between treatment and control and the response
distributions are skewed (e.g., Hesterberg 2015, 372). Appendix A illustrates this with the example of a
skewed beta distribution and sample sizes of n1 = 1000 and n2 = 30. Under these conditions, the t test with
α = 0.01 falsely rejects the null of mean equality over 10% of the time. By contrast, the difference-of-means
permutation test maintains exact coverage under these conditions.

2. By a valid test, we mean one whose true false-rejection rate is no greater than its significance level α.
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The guaranteed validity of permutation tests make them an appealing mode of statistical

inference, and Fisher’s original formulation of them has been extended in various ways. It

was soon noted, for example, that permutation test could be used to assess a null hypoth-

esis of a constant treatment effect of any magnitude, not just Fisher’s null of zero effect.

Moreover, confidence intervals for a constant treatment effect could be derived by inverting

a sequence of such tests (Lehmann 1963). Indeed, Rosenbaum (2002, 2010) has developed a

comprehensive statistical framework of testing, estimation, and inference entirely within the

Fisherian paradigm.

Nevertheless, permutation tests have also been the target of trenchant critiques. Perhaps

the most damning is the charge that permutation tests are not valid tests of so-called “weak”

null hypotheses that specify the value of some function of the treatment effects, such as the

ATE, rather than the unit-level effects themselves. For example, if two groups differ in

spread but not location—as will generally be the case if treatment effects are heterogeneous

but mean-zero—then a permutation test will reject the weak null that the ATE is 0 at

higher-than-nominal rates. And unlike the t test, the permutation test of the ATE remains

invalid even as the sample size tends to infinity (unless the variances or group sizes are equal;

Romano 1990).

In the eyes of many political methodologists, permutation tests’ invalidity under the weak

null is a severe, if not disqualifying, limitation. Like Neyman (1935), many scholars consider

sharp nulls to be “uninteresting and academic.” Gelman (2011), for example, argues that

“the so-called Fisher exact test almost never makes sense, as it’s a test of an uninteresting

hypothesis of exactly zero effects (or, worse, effects that are nonzero but are identical across

all units).” Gelman’s concerns are widely shared, even by scholars favorably inclined towards

permutation tests in general. Keele (2015, 330), for example, describes the sharp null as “a

very restrictive null hypothesis” because it does not “accommodate heterogeneous responses

to treatment.” Similarly, Imai (2013, 7) notes that “the constant additive treatment effect

model is too restrictive. It is difficult to imagine that the treatment effect is constant across
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units in any social science experiment[,] where treatment effect heterogeneity is a rule rather

than an exception.”

Defenders of permutation tests have responded to these critiques in various ways. Some,

while largely accepting the critiques of the sharp null, argue that permutation tests are

nevertheless useful for assessing whether treatment had any effect at all, as a preliminary

step to determine whether further analysis is warranted (e.g., Imbens and Rubin 2015). An

alternative proposal, advanced by Chung and Romano (2013), is to employ “studentized”

test statistics that render permutation tests asymptotically valid under the weak null, as well

as exactly valid under the sharp null. Other scholars defend the constant-effects assumption

more forthrightly, regarding it as a convenient model or approximation that would in any case

be required by parametric alternatives.3 As Rosenbaum (2002) demonstrates, permutation

tests can also be used to assess multiplicative, Tobit, quantile, and attributable effects, each

of which permits (certain precise kinds of) heterogeneous additive effects (see also Bowers,

Fredrickson, and Panagopoulos 2013). Moreover, in theory there is no barrier to using

assessing any arbitrary null hypothesis with permutation tests, so long as the hypothesis

is sharp in the sense that it fully specifies the unit-level treatment effects. In practice,

however, testing arbitrary sharp null hypotheses does not provide informative inferences

because the parameter space is too unwieldy (with n units, the space of possible effects in

n-dimensional—assuming no spillover!).

1.1 Our Contribution

While the approaches described above are reasonable, all are predicated on the premise that

permutation tests are valid only as tests of a sharp null hypothesis. As such, they do not

directly address the concerns of critics who regard sharp nulls as inherently “restrictive,” “un-

interesting,” and “academic.” We offer an alternative response to these critics, one founded

3. Unless treatment-effect variation is explicitly modeled, both likelihood and Bayesian estimators (as well
as the classical normal-theory regression model) implicitly assume that the treatment effect is a parameter
that is constant across units (e.g., Byrk and Raudenbush 1988).
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on the premise that many permutation tests can in fact be interpreted as conservative tests

of a weak null hypothesis—that is, one under which unit-level effects are heterogeneous and

need not be precisely specified. Specifically, we prove that for a broad class of permutation

tests, one-sided rejection of the sharp null that all treatment effects τi equal some constant τ 0

also implies rejection of any null hypothesis under which the τi are bounded on one side by

τ 0. Thus, if the alternative hypothesis is that treatment effects are positive, one can reject

the non-superiority null that all effects are less than or equal to τ 0. Symmetrically, if effects

are negative in the alternative, then one can reject the non-inferiority null of τi ≥ τ 0∀i.

We show that this property holds for any permutation test statistic that is effect in-

creasing. Loosely speaking, an effect-increasing test statistic is one that increases in value

as the treated responses increase and the control responses decrease.4 Although some test

statistics, such as the studentized statistics described by Chung and Romano (2013), are not

effect increasing, many commonly used statistics are, including the difference of means, the

Wilcoxon rank sum, and Stephenson rank sum.

In contrast to the sharp null of no effects, the null hypotheses of non-superiority and

non-inferiority are often quite plausible a priori. They are also theoretically and norma-

tively important, particularly due to their close connection with the concept of a Pareto

improvement. For a treatment or intervention to be Pareto improving, it must make at

least one person better off while hurting no one. Thus, rejecting the null hypothesis of

non-inferiority implies rejection of the hypothesis that a treatment is Pareto improving.

Finally, by inverting a sequence of permutation tests, it is possible to form a one-sided con-

fidence interval for the maximum treatment effect (analogous logic applies for the minimum

effect). Just as with a t test, where rejecting the weak null µ = µ0 against the alternative

µ > µ0 implies rejection of the composite hypothesis µ ≤ µ0, rejecting τi = τ 0 ∀i with a

one-sided permutation test implies rejection of the non-superiority hypothesis τi ≤ τ 0 ∀i.

4. We borrow the term effect increasing test statistics from Rosenbaum (2002, 37–8), who discusses
them in the context of power against particular alternatives under the sharp null. Our definitions of effect
increasing differ slightly, in that Rosenbaum defines it in terms of observed outcomes and we do so in terms
of potential outcomes.
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The difference is that in the permutation case, τ 0 is not the average effect (unless effects are

constant) but rather the maximum treatment effect—that is, the upper bound of the range of

unit-level effects. When using permutation tests sensitive to the central tendency, inferences

on the upper bound will coincide closely with inferences for the ATE. As we demonstrate

in our example application, however, the inferences can diverge substantially if one uses a

test statistic sensitive to extreme treatment effects. Indeed, even if the ATE is significantly

positive, it is nevertheless possible to conclude that treatment had a negative effect on at

least one unit.

In sum, we offer a novel reinterpretation of Fisherian inference. We show that permuta-

tion tests do much more than merely assess whether treatment had any effect at all. Not

only are they are valid tests of a much less restrictive null hypothesis than is commonly

understood, but they also (unlike ATE estimators) can be used to draw inferences about the

maximum or minimum treatment effect, a quantity that is often of normative or theoretical

interest. All this is possible without asymptotic approximations or any additional assump-

tions beyond random assignment and SUTVA (Rubin 1980). Thus, scholars analyzing small

samples from unknown probability distributions need not resort to dubious assumptions in

order to draw scientifically interesting inferences about treatment effects. Rather, they can

use permutation tests with statistical confidence and without apology.

2 Illustration

At the broadest level, Fisher and Neyman shared the same goal: making inferences about the

effects of treatment on a given sample of units, based solely the assumption that treatment

was randomly assigned.5 In Neyman’s (1923) terms, both were interested in the differences

in potential outcomes under treatment and control, τi = Yi(1) − Yi(0), for n units indexed

by i. Under the assumption that Yi(1) and Yi(0) depend only on i’s own observed treatment

5. Since we focus on finite-sample inference, which regards the potential outcomes as fixed rather than
random, we set aside Neyman’s additional interest in the population (as opposed to sample) ATE.
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status,6 these quantities of interest are fully defined by the potential-outcome schedule S,

which specifies all the potential outcomes in the sample.7 Drawing inferences about the

unobserved elements of the potential-outcome schedule is the core task of causal inference.

As illustration, consider a sample of 16 units, 8 of which have been randomly assigned

to treatment (Wi = 1) and 8 to control (Wi = 0). Table 1 presents what we know about the

sample. For each unit, only one potential outcome is observed; the other potential outcome

is missing, and so is each unit’s treatment effect. Suppose that we are interested in assessing

the alternative hypothesis that units were positively affected by the treatment. Based on the

observed outcomes, we calculate a treated–control difference of means of tobs = Ȳ1 − Ȳ0 =

+1.13. How unlikely is a difference of means this large, relative to what would be expected

by chance?

i Wi Yi Yi(0) Yi(1) τi
1 0 −0.90 −0.90 ? ?
2 0 0.18 0.18 ? ?
3 0 1.59 1.59 ? ?
4 0 −1.13 −1.13 ? ?
5 0 −0.08 −0.08 ? ?
6 0 0.13 0.13 ? ?
7 0 0.71 0.71 ? ?
8 0 −0.24 −0.24 ? ?
9 1 2.98 ? 2.98 ?

10 1 0.86 ? 0.86 ?
11 1 1.42 ? 1.42 ?
12 1 1.98 ? 1.98 ?
13 1 0.61 ? 0.61 ?
14 1 −0.04 ? −0.04 ?
15 1 2.78 ? 2.78 ?
16 1 −1.31 ? −1.31 ?

Table 1. The potential-outcome schedule S for our 16-unit illustration.

Answering this question requires comparing tobs to its reference distribution under some

null hypothesis H0. In the Fisherian paradigm, H0 consists of an n-vector τ 0 of treatment

6. This is known as the stable unit treatment value assumption, or SUTVA (Rubin 1980).
7. This is what Rubin (2005, 323–4) calls the “science” table. We use “potential-outcome schedule” to

echo Freedman’s (2009) term “response schedule.”
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effects, based on which we can create a null potential-outcome schedule S̃τ0 with the missing

potential outcomes filled in. Using the imputed S̃τ0 , we can “re-run” our experiment on the

same units and calculate the test statistics that would have been observed under alternative

permutations of treatment assignment. The collection of these values across permutations

constitutes the statistic’s reference distribution under the null hypothesis, conditional on the

observed data. The proportion of permutations with a value of the test statistic at least as

large as tobs is the p-value under H0.

This procedure is simplest for the sharp null of no effect. Under this hypothesis, τi = 0 ∀i,

so the potential outcomes imputed under this hypothesis simply equal the observed outcomes

(see Table 2, columns 4–5). However, the same procedure may be used for any arbitrary τ 0.

If Wi = 1, we simply impute the missing Yi(0) as Yi−τ 0i = Ỹi(0); likewise, if Wi = 0 we impute

Yi + τ 0i = Ỹi(1). Columns 7–9 of Table 2 illustrate this procedure for a constant-effect null of

τi = −1 ∀i, and columns 10–12 do so for a “non-superiority” null under which most effects are

0 but two are negative. For any such sharp null, we can generate the reference distribution

by repeatedly permuting the treatment variable W , determining potential outcomes that

would have been observed under that treatment assignment, and calculating the value of the

test statistic in each permutation.8

The bottom row of Table 2 lists the observed difference of means (tobs) as well as the

p-values of this statistic under each sharp null hypothesis. Notice that the p-values under the

constant-effect null and the non-superiority null are both smaller than the p-value under the

null of no effects whatsoever. This is no coincidence. Rather, as we later prove, the p-value

under any sharp non-superiority null that satisfies τi ≤ 0 ∀i is guaranteed to be no larger than

8. See, for example, Ding, Feller, and Miratrix (2016, 660). It is worth noting that this procedure
differs slightly from that described by Rosenbaum (e.g., 2002, 44), who instead proposes testing whether
the imputed potential outcomes under control, Ỹi(0) = Yi −Wiτ

0
i , satisfy the sharp null of no effects. The

disadvantage of the Rosenbaum procedure is its arbitrary choice of Ỹi(0) rather than Ỹi(1) as a baseline.
This choice can affect the results of the test if, for example, the difference of means is the test statistic
and null stipulates heterogeneous additive effects. For intuition on this point, observe that the vector Ỹ(1)
imputed under the non-superiority null (Table 2, column 11), because it incorporates the −2 treatment effect
for unit 2, deviates more strongly from the sharp null than does Ỹ(0), which incorporates only the smaller
−1 effect for unit 12. The exact p-values under the no-effects null are 0.025 for Ỹ(1) and 0.035 for Ỹ(0). In
expectation, either test is valid, but for any realized treatment assignment their results can differ.
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Observed Data H0: No Effects H0: Constant Effect H0: Non-Superiority

i Wi Yi Ỹi(0) Ỹi(1) τ 0i Ỹi(0) Ỹi(1) τ 0i Ỹi(0) Ỹi(1) τ 0i
1 0 −0.90 −0.90 −0.90 0 −0.90 −1.90 −1 −0.90 −0.90 0
2 0 0.18 0.18 0.18 0 0.18 −0.82 −1 0.18 −1.82 −2
3 0 1.59 1.59 1.59 0 1.59 0.59 −1 1.59 1.59 0
4 0 −1.13 −1.13 −1.13 0 −1.13 −2.13 −1 −1.13 −1.13 0
5 0 −0.08 −0.08 −0.08 0 −0.08 −1.08 −1 −0.08 −0.08 0
6 0 0.13 0.13 0.13 0 0.13 −0.87 −1 0.13 0.13 0
7 0 0.71 0.71 0.71 0 0.71 −0.29 −1 0.71 0.71 0
8 0 −0.24 −0.24 −0.24 0 −0.24 −1.24 −1 −0.24 −0.24 0
9 1 2.98 2.98 2.98 0 3.98 2.98 −1 2.98 2.98 0

10 1 0.86 0.86 0.86 0 1.86 0.86 −1 0.86 0.86 0
11 1 1.42 1.42 1.42 0 2.42 1.42 −1 1.42 1.42 0
12 1 1.98 1.98 1.98 0 2.98 1.98 −1 2.98 1.98 −1
13 1 0.61 0.61 0.61 0 1.61 0.61 −1 0.61 0.61 0
14 1 −0.04 −0.04 −0.04 0 0.96 −0.04 −1 −0.04 −0.04 0
15 1 2.78 2.78 2.78 0 3.78 2.78 −1 2.78 2.78 0
16 1 −1.31 −1.31 −1.31 0 −0.31 −1.31 −1 −1.31 −1.31 0
tobs = +1.13 p = 0.040 p = 0.002 p = 0.027

Table 2. potential-outcome schedules imputed under the sharp null hypotheses of no effects (columns
4–6), a constant effect of −1 (columns 7–9), and non-superiority (columns 10–12). The bottom row lists the
observed difference of means (tobs) and its one-sided permutation p-values under the three null hypotheses.

the p-value under the sharp null of no effects (τi = 0 ∀i). This result follows from the fact

that the reference distribution generated under the null of no effects weakly stochastically

dominates the distribution under any non-superiority null. This fact is illustrated visually in

Figure 1, which plots the reference distribution for the no-effects null (solid black line), the

constant-effects null of −1, and ten randomly generated nulls with heterogeneous treatment

effects bounded between −1 and 0. Note that the density lines of the heterogeneous-effect

nulls are all to the left of the solid no-effects density line and to the right of the dashed

constant-effect line. Consequently, the cumulative density greater than tobs (vertical dotted

line)—that is, the p-value—is largest for the no-effect null, smallest for the constant-effect

null, and somewhere in the middle for each of the heterogeneous nulls.

This result has several implications. First, it means that if the sharp null hypothesis

of no effect τi = 0 ∀i can be rejected at level α, so can any null hypothesis such that

τi ≤ 0 ∀i. In other words, tests of the no-effect null are conservative tests of the more
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Test Statistic
−3 −2 −1 0 1 2

Figure 1. Reference distributions under different null hypotheses. The dark black line is the reference
distribution of t = (Ȳ |Wi = 1)− (Ȳ |Wi = 0) under the sharp null hypothesis of no effects. The red dotted
line denotes the observed tobs. The p-value is the area under the curve to the right of this, and as it is small
we would reject the null. The dashed green line is the reference distribution under the null hypothesis of
a constant treatment effect of τ0 = −1. The grey lines are a sample of 10 possible reference distributions
for ten different non-superiority nulls of no positive effects. They are all stochastically lower than the sharp
zero null, and thus have lower p-values.

general (weak) null of non-superiority. (See Figure 2 for a visual representation of the

relationship between the Fisher’s no-effect null and the non-superiority null.) Moreover, this

result extends to any constant-effect null: rejection of H0 : τi = τ 0 ∀i implies rejection of

H0 : τi ≤ τ 0 ∀i. This observation is particularly important for confidence intervals (CIs),

which in the permutation framework are defined as the collection of sharp null hypotheses

not rejected at a given significance level. Typically, permutation CIs are calculated under a

constant-effect assumption, but the above result suggests an alternative interpretation that

does not require this assumption. Under this re-interpretation, a one-sided permutation CI

for a constant effect is also a valid CI for the lower bound on the maximal unit-level effect,

τmax. Thus, an α-level CI of [τ`,∞) will miss the true τmax with probability α, and we can

conclude with 100× (1− α)% confidence that at least some units had a treatment effect as

large as τ`.

For intuition, consider the example of a newly developed drug, whose side effects on pain

we wish to compare to those of an existing drug. In particular, we wish to assess whether the
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Figure 2. The null hypothesis of non-superiority. The horizontal and vertical axis indicate, respectively,
Ỹi(1) and Ỹi(0): the treated and control potential outcomes imputed under the null hypothesis. The dotted
line represents Fisher’s sharp null of no effects, under which Ỹi(1) = Ỹi(0). The red squares indicate the
observed treated outcomes Yi(1), and the horizontal red lines indicate their possible values of Ỹi(0) under
the non-superiority null. The blue circles and vertical blue lines indicate the Yi(0) and possible Ỹi(1) for
units actually assinged to control.
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new drug increases any subject’s pain level Yi relative to the existing drug. Given random

assignment to the existing drug (Wi = 0) and the new (Wi = 1), we can do so using an

appropriate one-sided permutation test the null hypothesis H0 : Yi(1) − Yi(0) ≡ τi = τ 0 ∀i

for a sequence of τ 0 values. If τ`, the smallest value of τ 0 that cannot be rejected at α = 0.05,

is greater than 0, then we can conclude with 95% confidence that the new drug caused at

least one subject at least τ` more pain than the existing drug would have. In other words,

we can conclude not only that the sharp null of no effects is implausible, but that at least

one subject was adversely affected by the new drug.

Having illustrated the intuition behind our argument, we now turn to a formal exposition

of it. We first prove that an effect-increasing permutation test of a given sharp null τ = τ 0

is also a valid test of the “weak” non-superiority (or non-inferiority) null that the unit-

level treatment effects are bounded on one side by the vector τ 0. We then show that

without further assumptions this result can be exploited to derive confidence intervals for the

maximum (or minimum) effect. Finally, we prove that several commonly used test statistics

are effect increasing, explain why several others are not, and discuss power considerations in

the selection of test statistics. Following this formal exposition, we turn to a discussion of

the theoretical and normative status of non-superiority/non-inferiority nulls, followed by an

empirical application.

3 Proof of Validity under the Weak Null of Non-Superiority

As noted above, permutation tests are typically conducted under a sharp null hypothesis

that precisely specifies the n-vector of unit-level treatment effects τ . Let Hτ0 denote the

sharp null hypothesis τ = τ 0, where τ 0 is a vector of hypothesized treatment effects, not

necessarily equal to 0 or constant. Testing such a sharp null hypothesis entails first choosing

a test statistic T (W,Y ), which is a function of the treatment W and the outcome Y .9 Since

9. We are simplifying the exposition by condidering univariate outcomes and by ignoring covariates. More
generally, however, a test statistic may be a function of multiple outcome variables as well as of covariates.
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Y is itself a function of W and the potential outcomes Y (0) and Y (1), we can also write

the test statistic as T (W,Y (0), Y (1)) = T (W,S). S being fixed, the randomness in T (W,S)

comes only from the randomness in W . Examples of test statistics include the treated-control

difference of means,

T (W,S) =
∑

WiYi(1)/
∑

Wi −
∑

(1−Wi)Yi(0)/
∑

(1−Wi), (1)

but there are many other options, several of which we discuss later in the paper.

The observed value of the test statistic is tobs = T (wobs,yobs), where wobs and yobs

are, respectively, the observed treatment and outcome vectors. To evaluate whether a test

statistic value as large as tobs would be unusual under the null hypothesis, we compare it

to its permutation distribution under the null. Being sharp, Hτ0 allows us to impute the

potential-outcomes schedule under the null, S̃τ0 = S̃(wobs,yobs,Hτ0), through the relations

Ỹi(0) =


wi = 0 yobsi

wi = 1 yobsi − τ 0i

and

Ỹi(1) =


wi = 0 yobsi + τ 0i

wi = 1 yobsi .

Using S̃τ0 , we can then impute the test statistic value that would have been observed under

any alternative realization of W . Let w∗ denote a random draw from the space of potential

treatment assignment, and let t∗ = T (w∗, S̃τ0) be the value of the test statistic given w∗ and

S̃τ0 .10 The p-value of tobs under Hτ0 is thus the probability across permutations of observing

10. The assignment vector W is random according to an assignment mechanism which returns a specific w

with given probability P{W = w}. For instance, in the completely randomized design, P{W = w} =
(
N
NT

)−1

for any w such that
∑
wi = NT for some pre-specified NT . In most typical experiments, all treatment

assignments that have non-zero probability are equiprobable.
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a test statistic value at least as large as tobs:

pτ0 ≡ P
{
T (w∗, S̃τ0) ≥ tobs

}
. (2)

This exact p-value can be estimated to arbitrary precision by sampling J random permuta-

tions of treatment w∗j and calculating

p̂τ0 =
1

J

J∑
j=1

1
{
tj ≥ tobs

}
=

1

J

J∑
j=1

1
{
T (w∗j , S̃τ0) ≥ tobs

}
≈ pτ0 . (3)

We next show that, for a class of effect-increasing test statistics, a test of the sharp null

is actually a valid test of a much more general “weak” null hypothesis, under which the

treatment effects are bounded on one side by the sharp null but otherwise may be arbitrarily

heterogeneous. When the test statistic is an increasing function of the treatment effects, such

as the difference of means, this weak null is one of non-superiority—that is, one bounded

above by the sharp null:

Hτ∨(Non-Superiority) : τi ≤ τ∨i ≡ τ 0i ∀i ∈ 1 . . . n.

Analogously, when the test statistic is decreasing in treatment effects, the weak null is one

of non-inferiority, on which the sharp null is a lower bound:

Hτ∧(Non-Inferiority) : τi ≥ τ∧i = τ 0i ∀i ∈ 1 . . . n.

For ease of exposition we focus in this section on the non-superiority null Hτ∨ , but all out

results can be extended to Hτ∧ by multiplying Y by −1.

Unlike the sharp null Hτ0 , which corresponds to a single null potential-outcomes schedule

S̃τ0 , the non-superiority null Hτ∨ corresponds to an infinitely large set of such schedules that

are consistent with the observed data and the treatment-effect bound (e.g., every set of
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points on the lines in Figure 2). Thus, if we reject this null, we are rejecting a set of null

schedules (and associated treatment-effect vectors) rather than a single point null. Because

each weak null permits infinitely many possible potential-outcome schedules, each of which

implies a different null distribution for the test statistic, no single p-value will be exact (i.e.,

have a false-positive rate of exactly α) for all possible schedules. We can show, however,

that for a class of test statistics the p-value associated with any of these null distributions

will be bounded above by the p-value under Hτ0 , making the sharp null p-value valid but

possibly conservative for the weak null. (A hypothesis test is conservative if, for any nominal

significance level α, the true probability of incorrectly rejecting the null hypothesis is no

greater than α.)

The above property holds for permutation tests that employ an effect-increasing test

statistic. To define this class of statistics, we must first introduce the notion of ordering

potential-outcome schedules:

Definition: Ordering of Potential-Outcome Schedules. Two potential-outcome sched-

ules S and S′ are ordered as S � S′ if Yi(1) ≤ Y ′i (1) and Yi(0) ≥ Y ′i (0) ∀i ∈ 1 . . . n. That is,

S � S′ if and only if no unit’s potential outcome under treatment is smaller in S′ than in S

and no unit’s potential outcome under control is larger in S′ than in S. An immediate conse-

quence of such ordering is that the individual treatment effects are also ordered: τi ≤ τ ′i ∀i.

Our class of statistics is then defined as those that satisfy the following:

Definition: Effect Increasing (EI). A test statistic T is effect increasing if, for two

potential-outcome schedules S and S′, S � S′ implies T (w,S) ≤ T (w,S′) for all allowed

realizations of the w treatment variable W . In other words, a test statistic T is effect

increasing if it is weakly increasing in the potential outcomes under treatment and weakly

decreasing in the potential outcomes under control (cf. Rosenbaum 2002, 37–8). Since S � S′

implies τi ≤ τ ′i ∀i, an EI statistic is also increasing in the individual treatment effects (hence

the label “effect increasing”).
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For effect-increasing statistics we have the following proposition:

Proposition 1. If τ0 = τ∨, a permutation test of Hτ0 is a conservative (and thus valid)

test of Hτ∨ in that for all Sh ∈ Hτ∨

P{Reject Hτ∨|Sh} = P
{
T (w∗, S̃τ0) ≥ T (w,Sh)

}
≤ α,

with the probabilities taken across both w and w∗, each random draws from the assignment

mechanism.

Proof: Let Sh ∈ Hτ∨ be any potential-outcomes schedule satisfying the non-superiority null

hypothesis τi ≤ τ∨i ≡ τ 0i ∀i ∈ 1 . . . n. Suppose Sh holds. We randomize the units and obtain

wobs, yobs, and tobs = T (wobs,Sh). We then impute S̃τ0 = S̃(wobs,yobs,Hτ0) and obtain

p̃, our nominal p-value. Even though Hτ∨ holds, Hτ0 might not, and so it is possible that

S̃τ0 6= Sh and thus p̃ 6= p. However, if the test statistic is effect increasing, then we can place

a bound on p̃. In particular, note that

Ỹi(1) =


Yi(1) wobs

i = 1

Yi(0) + τ 0i otherwise

for all i ∈ 1 . . . n. Under Hτ∨

τ 0i ≥ τi = Yi(1)− Yi(0),

so

Yi(1) ≤ Yi(0) + τ 0i

and thus

Yi(1) ≤ Ỹi(1).
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In other words, every true potential outcome under treatment is no larger than its imputed

equivalent. By analogous logic Yi(0) ≥ Ỹi(0). This, together with Yi(1) ≤ Ỹi(1), implies

Sh � S̃τ0 . Since T (W,S) is effect increasing, T (w,Sh) ≤ T (w, S̃τ0) for any realization

W = w. In other words, because the potential-outcome schedules are ordered Sh � S̃τ0 ,

the values of T simulated from S̃τ0 will be pointwise weakly larger than T ’s true reference

distribution. As a consequence,

p̃ = P
{
T (w∗, S̃τ0) ≥ tobs

}
≥ P

{
T (w∗,Sh) ≥ tobs

}
= p,

i.e., the estimated p-value will be at least as large as the true one. This gives a valid (though

potentially conservative) test:

P{p̃ ≤ α} ≤ P{p ≤ α} ≤ α.

�

This result means that if we consider a test of a given sharp null as a test of the associated

non-superiority null, we still have a valid test. In particular, rejecting Hτ∨ when the nominal

p-value for a permutation test of Hτ0 is less than α is a valid testing procedure for Hτ∨ .

4 Confidence Intervals for Maximum/Minimum Effects

For sharp null inference, confidence intervals are generally obtained by inverting a sequence

of sharp-null level-α tests of hypotheses Hτ0 . For example, we might consider a sequence of

constant shift hypotheses Hτ0 : τi = τ 0 ∀i. For each candidate value τ 0h = τ 0 we calculate

p(τ 0h) = P
{
T (w∗, S̃τ0h) ≥ tobs

}
,
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and if p(τ 0h) ≤ α, we conclude that τ 0h is implausible. This gives a confidence set of plausible

τ 0 values of

CI ≡
{
τ 0h : p(τ 0h) ≥ α

}
.

The confidence sets are random depending on the randomization. They are valid in the sense

that if the treatment effect is in fact constant (S ∈ Hτ0h
for some τ 0h), then the confidence

set CI will contain τ with probability at least 1 − α. Unfortunately, if treatment effect is

not constant, there is no immediate reason for CI to contain any particular summary of the

treatment effects (e.g., the ATE). This is one of the primary complaints against permutation

inference. By viewing these tests as tests of a non-superiority null, however, the associated

confidence interval does in fact have a general interpretation that does not depend on the

implausible assumption of constant effects.

To show this, we first need a small lemma:

Lemma 1. For our one-sided testing case, and regardless of the character of the true S,

the CI for an effect-increasing statistic will be a half-interval [L,∞), indicating that the

constant-shift treatment effect is no smaller than L.

Proof: Say our CI is not a half-interval. Then there exists τ1 < τ2 such that τ1 is not in CI

and τ2 is. But the proof of our main result shows that if we are testing Hτ02
then the p-value

will be lower for any S′ � S̃, including the one corresponding to a constant treatment effect

shift of τ1 < τ2. But this means τ1 would not be in CI, which is a contradiction. Therefore

the CI is a half-interval. �

These confidence intervals can easily generalize to non-superiority nulls. Let CI be the

above confidence set generated by inverting a sequence of constant-effect nulls. Now consider

the true potential-outcomes schedule S. Assuming all potential outcomes are defined, let

τ ∗ ≡ arg max
i
τi
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be the largest treatment effect in schedule S. Then Hτ∨ : τi ≤ τ ∗ ∀i is true, and so testing

the associated Hτ0 : τi = τ ∗ ∀i will reject with probability no greater than α. We therefore

will include τ ∗ ∈ CI with probability no less than 1− α, giving a valid CI for the maximum

effect.

The typical permutation CI for a constant effect can thus be interpreted as a confidence

set on the maximum treatment effect in the sample (or minimum, in the case of a non-

inferiority hypothesis). In other words, given a set [L,∞) we can say that we are at least

1 − α confident that some units have a treatment effect of at least L. This statement does

not depend on any specific structure on the individual effects; we can have arbitrary het-

eroskedasticity. That being said, the less heterogenous the effects, the more individual effects

we would expect to be in the CI. Of course, in the limiting case of no effect heterogeneity

(i.e., a constant effect), [L,∞) will, as discussed above, contain all the individual effects with

probability 1− α.

It should be emphasized that the permutation CI for the maximum effect will have correct

coverage regardless of the test statistic used, as long as that statistic is effect increasing. The

CI will, however, vary depending on the test statistic’s power against different alternatives.

In particular, unless the treatment effects are close to constant, using a statistic sensitive

to the central tendency may result in relatively uninformative confidence bounds for the

maximum. Thus, if heterogenous effects are expected, it may be preferable to use a statistic

that is sensitive to the largest effects, such as the Stephenson rank sum (see below).

5 Effect-Increasing Test Statistics

As we have noted, only permutation tests that employ an effect-increasing test statistic are

valid under the weak null of non-superiority. In this section, we show that the difference of

means, the Wilcoxon rank sum, and other common test statistics are effect increasing. We

also note that others, including the studentized difference of means, are not effect increasing.
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We then briefly touch on the issue of statistical power against different alternatives.

One class of effect-increasing statistics are those that can be defined in terms of Q(Yi),

a non-descreasing score function of Yi. Let Qi = Q(Yi) denote the observed scores, and

let Qi(1) = Q(Yi(1)) and Qi(0) = Q(Yi(0)) indicate the scores of the potential outcomes.

Denote as S(W,S) any statistic with the form
∑

iWiQ(1)i =
∑

iWiQi, i.e., the sum of the

scores of the treated observations.11 For any S(W,S) and any pair of potential-outcome

schedules S � S′,

Yi(1) ≤ Y ′i (1) ∀i =⇒ Qi(1) ≤ Q′i(1) ∀i b/c Q(Yi) is non-decreasing in Yi

=⇒ Qi(1)−Q′i(1) ≤ 0 ∀i

=⇒
∑

[Qi(1)−Q′i(1)] ≤ 0 b/c every element is ≤ 0

=⇒
∑

Wi[Qi(1)−Q′i(1)] ≤ 0 b/c Wi ≥ 0

=⇒
∑

[WiQi(1)−WiQ
′
i(1)] ≤ 0

=⇒
∑

[WiQi(1)]−
∑

[WiQ
′
i(1)] ≤ 0

=⇒
∑

[WiQi(1)] ≤
∑

[WiQ
′
i(1)]

=⇒ S(W,S) ≤ S(W,S′),

thus demonstrating that any statistic of the form
∑

iWiQ(1)i is effect increasing. This

obviously includes the special case of the sum of the treated responses,
∑

iWiY (1)i, for

which Q(Yi) = Yi. The intuition behind this is that raising any individual potential outcome

on the treatment side will either (if the unit was treated) increase
∑

iWiY (1)i or (if the unit

was not treated) not affect the test statistic at all.

As is well known, the sum of the treated responses is permutationally equivalent to the

treated-control difference of means, so the latter is also an effect-increasing statistic. So too

11. Note that as Q(Yi) depends only on unit i, not on the entire vector Y . This is a crucial difference
from the class of sum statistics defined by Rosenbaum (2002, 35). As a result of this distinction, the class of
statistics S(W, S) defined here excludes rank statistics because the rank of Yi depends on the values of other
observations. We treat ranks statistics separately below.
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is the difference of mean scores. This follows from the fact that the average of the treated

scores, Q̄T = N−1T
∑

[WiQi(1)], being the sum multiplied by a constant, is effect increasing,

and so is the additive inverse of the average of the control scores, −Q̄C = −N−1C
∑

[WiQi(0)].

Because S � S′ =⇒ Q̄T ≤ Q̄′T and S � S′ =⇒ −Q̄C ≤ −Q̄′C , we can conclude that

S � S′ =⇒ Q̄T − Q̄C ≤ Q̄′T − Q̄′C , that is, the difference of mean scores is an effect-

increasing statistic as well. This again includes the difference of means as a special case

where Q(Yi) = Yi.

The EI property does not hold, however, if the difference of means is “studentized” by a

consistent estimate of its standard error:

t =
ȲT − ȲC√

s2T/NT + s2C/NC

.

The t statistic is not EI because a large increase in one unit’s treated outcome can have

such a large effect on the standard deviation sT that it outweighs the effect on the mean ȲT ,

thus decreasing the statistic overall. Indeed, given that that the standard deviation is more

sensitive to outliers than the mean, this can easily occur. We conjecture that the same holds

for other studentized test statistics, such as the studentized Wilcoxon rank sum (Chung and

Romano 2013), though we have not proven this.12

We can, however, show that many common rank statistics, despite not being defined

in terms of the Q(Yi) (see footnote 11 above), are nevertheless effect increasing as well.

Appendix B provides such a proof in the case of continuous outcomes for any statistic that

can be represented as a difference in the scaled sum of ranks:

T (W,Y ) =
1

nT

∑
i

Wia(Ri)−
1

nC

∑
i

(1−Wi)a(Ri),

12. More obviously, statistics not sensitive to one-sided location shifts—such as the absolute difference
of means, the difference of variances, and the two-sided Kolmogorov-Smirnov statistic—are also not effect-
increasing.
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where Ri is the rank of Yi and a(Ri) is some non-decreasing function of the ranks. In the

presence of ties, this general proof does not hold, but direct proofs can be constructed for

more restricted classes of statistics. Appendix B does so for the Wilcoxon rank sum as well

as for the class of two-sample statistics described by Stephenson (1981) and Stephenson and

Ghosh (1985), whose score function has the form

a(Ri) =


(
Ri−1
s−1

)
Ri ≥ s

0 otherwise

for some fixed integer s ≥ 2. Stephenson rank statistics are equivalent to summing the

number of subsets of size s in which the largest response is in the treated group. The

Stephenson rank statistic with s = 2 is almost identical to the Wilcoxon rank sum. However,

as s increases beyond 2, the Stephenson ranks place more and more weight on the largest

responses.

Stephenson rank statistics are particularly interesting in the context of this paper due to

their power to detect uncommon-but-dramatic responses to treatment (Rosenbaum 2007).

Intuitively, this is because as the subset size s increases, it becomes increasingly likely that the

largest response in a given subset will be one with an unusually large treatment effect.13 Thus,

compared to the difference of means and the Wilcoxon rank sum, whose power is greatest

against a constant location shift, the Stephenson ranks have much greater power against

alternatives under which effects are heterogeneous and a few are highly positive (relative to

the null). This sensitivity to extreme treatment effects leads to tighter confidence intervals

for the maximum effect when the maximum differs greatly from the mean or median. It

is even possible for a Stephenson rank test to reject the null of non-superiority when the

ATE estimate is negative, if some treatment effects are sufficiently positive. Thus, when

13. Examining the asymptotic relative efficiency of a closely related class of test statistics, Conover and
Salsburg (1988, 196) find that when a only small fraction of treated respond, the optimal subset size s is
between 5 and 6.
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treatment effects are heterogeneous, the behavior of the Stephenson test can differ markedly

from the rank sum or difference of means, while like them still providing a valid test of the

null hypothesis of non-superiority.

6 Relevance of Non-Inferiority and Non-Superiority Hy-

potheses

So far, we have shown that effect-increasing permutation tests are valid under the weak null

of non-superiority; that inverting a sequence of such tests produces valid confidence intervals

for the maximum effect; and that many familiar test statistics are effect increasing. We now

consider the substantive relevance of non-superiority hypotheses (along with their mirror

image, non-inferiority hypotheses). In brief, we argue that such nulls are relevant to two

main kinds of questions: whether a treatment had “policy-relevant” effects and whether a

generally beneficial treatment harmed any units, the latter of which is closely related to the

idea of a Pareto improvement.

First, non-superiority and non-inferiority hypotheses can be appropriate for one of the

most common questions motivating social scientists: whether some treatment has a (policy

relevant sized) effect on the outcome. Typically scientists wishing to use randomization

inference would limit themselves to testing the knife-edge null of absolutely zero effect for

every unit (τi = 0 ∀i). This null, however, is only relevant for questions in which strong

plausible theory suggests there is no possibility of effects. This kind of strong theory is found

in physics, for example in the hypothesis that neutrinos cannot go faster than the speed of

light . By contrast for most social phenomena we do not have strong beliefs of zero causal

effects for all units, except in the case of treatments affecting past outcomes (the basis for

placebo tests of design assumptions; Rosenbaum 2002).

However, in many social contexts it is plausible that a treatment has at most small

effects—so small that they fall within what might be called a “policy-irrelevant” interval
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(τL, τU). In such cases, we may wish to assess whether treatment had any “policy-relevant”

effect outside this window. This can be done by testing either the non-superiority null

Hτ∨ : τi ≤ τU ∀i, the non-inferiority null Hτ∧ : τi ≥ τL ∀i, or both (possibly correcting

for multiple testing; see, e.g., Caughey, Dafoe, and Seawright, Forthcoming). Equivalently,

one could calculate permutation CIs for the maximum and minimum effects, [δg,∞) and

(−∞, δl], to see whether δg > τU or δl < τL. If the same measure of central tendency, such

as the difference of means, is used as a test statistic for both Hτ∨ and Hτ∧ , then the CIs will

overlap (i.e., δg < δl), meaning that at most one hypothesis can be rejected. If, however,

a statistic sensitive to the tails of the treatment effect distribution, such as the Stephenson

rank sum, is used, then it is possible for the CIs to be disjoint, as they are in Figure 3. In

such a case, it can be concluded that treatment had at least one negative and at least one

positive policy-relevant effect.

                                    0

δg

δl

rejection region for H_g; there exists an effect larger than every point here

rejection region for H_l; there exists an effect smaller than every point here

Actual unit level effects

Region of policy irrelevant effects

Figure 3. Two one-sided confidence intervals for maximum and minimum effects (blue lines). The
confidence intervals [δg,∞) and (−∞, δl] do not overlap in this illustration, which is possible if they are
based on a test statistic sensitive to the tails of the distribution of treatment effects (e.g., the Stephenson
rank sum).

Another domain where our general null hypothesis is especially applicable involves eval-

uating for the existence of harm, in this case by evaluating the non-inferiority null. It is a

widely held ethical and moral principle that one should avoid doing harm: it is not enough

for one’s good and bad actions to “average out” as positive, but one must systematically

avoid committing bad actions, even if that leads to less good “overall”. Many people would

oppose a policy intervention or new drug if it were shown to inflict harm on individuals,
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whether or not on average it had beneficial effects. Experimental moral philosophy, as exem-

plified by the “Fat Man” variant of the Trolley problem, has shown that people may perceive

an action that “on average” is beneficial (saves the most lives) to be morally repugnant if it

involves causing harm to a single individual. Amongst medical doctors the ancient maxim

to “at least do no harm” can be interpreted as reflecting this moral aversion to committing

any injury even if in the service of an expected overall benefit. Economists and others often

strive for Pareto-improving policies, which by definition do not harm anyone and make at

least someone better off. In tort law people are held liable for various forms of injuries that

they cause to other individuals, largely irrespective of whether there are net benefits of the

action to society.

Thus, in many circumstances people and society perceive the relevant question to be

whether any one individual was harmed by an action: whether an action was not Pareto-

improving. This is of course readily expressed in terms of the non-inferiority null that

treatment had weakly positive effects for all individuals (τi ≥ 0 ∀i) against the alternative

that some individuals were harmed (∃i τi < 0). As always with randomization inference,

in implementing such a test one should use the test statistic that will be most sensitive to

the alternative. If the alternative is that everyone may have been somewhat injured (say

an additive effect), then a difference in means is a good choice for a powerful test statistic,

even if what one is interested in detecting is the existence of any harm. However, if the most

plausible alternative is that most people were benefited from the treatment, but some people

suffered great harm, then one wants a test statistic most likely to detect this great harm,

such as perhaps the Stephenson’s Rank or the difference in means of the bottom decile.14

14. To be clear, this setup can be used to reject the null that an intervention is Pareto improving, in favor
of the alternative that it is not Pareto improving. It can not be used for the reverse inference, to reject the
null of some harm, against the alternative of Pareto improvement, because the null is too vague. Further, in
general without additional assumptions no method will have statistical power to detect the absence of harm
for a single unit.
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7 Application: Campaign Effects in Benin

To illustrate how these insights can improve our understanding of a real study, we re-analyze

data from Wantchekon’s (2003) well-known field experiment in Benin.15 Wantchekon con-

vinced Beninese presidential candidates to randomly vary the content of their campaign

appeals in different villages, stratified by electoral district. The original experiment involved

three treatments—a clientelist campaign, a policy campaign, and a control group exposed to

both campaigns—with 8 villages per treatment group. Wantchekon hypothesized that the

clientelist campaign would be more effective than the control campaign, and that the policy

campaign would be less effective than control. Consistent with these hypotheses, candidates

earned an average vote share of 84% in villages where they ran clientelist campaigns, 74%

in control villages, and 69% where they ran policy campaigns (see Figure 4). Wantchekon

notes, however, in a few villages the policy campaign may have been more effective than

the control (2003, 413). According to the original paper all the mean differences between

treatment conditions are highly statistically signficant, but, as Green and Vavreck (2008)

note, Wantchekon’s analysis ignored village-level clustering and thus vastly overstated the

precision of his estimates.

Here we use permutation inference to re-analyze Wantchekon’s data at the village level.16

We begin with a comparison of the clientelist and control conditions. As Figure 4 indicates,

the distribution of outcomes in the clientelist and control conditions have about the same

variance, but the control distribution is shifted 10 percentage points lower. As Table 3

indicates, a paired t test yields a p-value of 0.039 and a one-sided 90% CI for the ATE of

[3.1%, ∞). A difference-of-means permutation test (permuting only within district strata)

yields almost precisely the same p-value and a slightly tighter CI of [3.9%, ∞), which is

consistent with the two tests’ asymptotic equivalence when group sizes are equal (Romano

15. There is no publicly available replication dataset for this study, but the village-level data are reported
in Table 2 on page 412 of Wantchekon (2003).

16. For an earlier re-analysis of these data, see Caughey, Dafoe, and Seawright (Forthcoming).
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Figure 4. Data from Wantchekon (2003). Hollow circles indicate group means. Note that two villages in
the clientelist condition are over-plotted because they returned the same vote share (81%).

1990).17 The p-values of Wilcoxon and Stephenson rank tests (0.031 and 0.019, respectively)

are slightly smaller and their CI ([5.1%, ∞) for both tests) is somewhat tighter, probably

because the rank-scores discount the negative outlier in the clientelist group.

Although the large-sample t test and exact permutation tests yield similar results, the

interpretations of the two sets of tests are different. The permutation test signals the im-

plausibility not only of the sharp null of no effects, but also of the inferiority null that no

treatment effects were positive. In fact, from the rank-test CI of [5.1%, ∞) we can conclude

with 90% confidence that in at least one village, running a clientelist campaign increased

candidate vote share by at least 5.1 percentage points. The inferences justified by the t test

are different. It provides evidence that the null of mean equality is implausible, and that

we can be approximately 90% confident that clientelism increased candidates’ average vote

share by at least 3.1 points.

17. The permutation difference of means is also asymptotically equivalent to the t when the treatment
and control variances are equal, which also appears to be true in these data.
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The comparison of the policy and control conditions is more nuanced. Consistent with

Wantchekon’s expectations, average vote share was about 6 points lower in the policy con-

dition. This difference, however, is not statistically significant under either a t test or a

difference-of-means permutation test (in both cases, p ≈ 0.22). This not the result of out-

liers reducing power: a Wilcoxon-Mann-Whitney test yields a one-sided p-value of 0.48. It

would thus appear that little can be inferred about the treatment effects of policy campaigns

relative to control.

We can, however, say more than this, by focusing on extreme effects rather than typical

(e.g., average or median) ones. If treatment effects are heterogeneous, as is suggested by the

difference in spread between the control and policy distributions, then using a test statistic

sensitive to the most negative or positive effects can provide greater power.18 Indeed, as Fig-

ure 4 indicates, the policy condition contains both the smallest and the largest observations

in the two groups. This pattern is consistent with the possibility, suggested by Wantchekon,

that policy campaigns were more effective in at least some villages. We can assess this hy-

pothesis formally using the Stephenson rank test, which is sensitive to large-but-rare effects.

Testing the null of no effects against the alternative of a few large positive effects, we obtain

a p-value of 0.086, providing suggestive evidence that the policy campaign treatment was

indeed more effective in at least some villages.19 The 90% CI for the largest effect of the

policy treatment is [1.1%, ∞). If we instead test for large-but-rare negative effects, we find

slightly weaker evidence against the non-superiority null (p = 0.125). Thus, despite the fact

that the estimated ATE of the policy treatment is negative (though far from statistically

significant), there is actually stronger evidence that the policy campaigns increased vote

share in at least one village than that it decreased any village’s share. This inference is

made possible by combining our new interpretation of permutation tests with a test statistic

specifically suited to maximize our power to detect extreme effects.

18. A permutation test of the difference of variances (which, it should be noted, is not an effect-increasing
statistic) indicates that of the null of distributional equality (i.e., the sharp null of no effects) can be rejected.

19. This is for the Stephenson ranks with subset size m = 6, but p-values for m = 7, 8, 9 and 10 are also
around 0.09.
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Alternative Hypothesis Statistical Test p 90% CI

Control < Clientelist Paired t (Asymptotic) 0.04 [+3.1, +∞)
Control < Clientelist Difference-of-Means (Exact) 0.04 [+3.9, +∞)
Control < Clientelist Wilcoxon Rank (Exact) 0.03 [+5.1, +∞)
Control < Clientelist Stephenson Rank (Exact) 0.02 [+5.1, +∞)
Policy < Control Paired t (Asymptotic) 0.23 [−4.4, +∞)
Policy < Control Difference-of-Means (Exact) 0.22 [−3.6, +∞)
Policy < Control Wilcoxon Rank (Exact) 0.48 [−7.9, +∞)
Policy < Control Stephenson Rank (Exact) 0.13 [−4.0, +∞)
Control < Policy Paired t (Asymptotic) 0.77 [−15.9, +∞)
Control < Policy Difference-of-Means (Exact) 0.79 [−14.5, +∞)
Control < Policy Wilcoxon Rank (Exact) 0.54 [−13.9, +∞)
Control < Policy Stephenson Rank (Exact) 0.09 [+1.1, +∞)

Table 3. Results of Different Analyses of the Benin Dataset.

8 Conclusion

The rise of nonparametric causal inference in the tradition of Neyman (1923) and Rubin

(1974) has been one of the most important recent developments in quantitative social science.

This perspective, with its focus on average treatment effects and its acceptance of effect

heterogeneity as the rule rather than the exception, has rightly prompted greater skepticism

of statistical methods that rely parametric models or assumptions. It is then perhaps no

surprise that permutation inference, which has traditionally been motivated in terms of

shift hypotheses or other highly structured models of treatment effects (e.g., Lehmann 1975;

Rosenbaum 2002), has shared in this skepticism.

What we have sought to demonstrate in this paper is that the view of permutation tests

now dominant among political methodologists—that despite their virtues, they are useful

only for assessing the typically uninteresting and implausible sharp hypothesis that treat-

ment had no effect at all—is too limited. We have proved that permutation tests that

employ effect-increasing test statistics are valid under the weak null of non-superiority; that

this fact can be exploited to derive confidence intervals for the maximum effect; and that

many familiar test statistics are effect increasing. We have also highlighted the value of less

familiar statistics such as the Stephenson rank sum, which is sensitive to the extremes of
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the treatment effect distribution, and explained the normative and theoretical relevance of

non-superiority and non-inferiority hypotheses. Finally, we have re-analyzed a well-known

experiment to demonstrate that, when coupled with the new interpretation we have ad-

vanced, permutation tests can yield substantively interesting inferences about treatment

effects that are not possible based on ATE estimation alone.

In sum, we have developed a novel perspective on permutation tests that we hope tempers

the skepticism that many political methodologists hold towards this otherwise-appealing

mode of statistical inference. Permutation tests are by no means a cure-all; nor are they

a substitute for ATE estimation when that is the goal of the analysis. But in many cases,

particularly when samples are small, treatment groups unequal, or treatment assignment

complex, they are the most reliable form of statistical inference. Moreover, even when this is

not the case, they often make possible inferences about treatment effects that other methods

cannot. For these reasons, permutation tests deserve a secure place in the quantitative social

scientists’ toolbox.
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A The t Test with Skewness and Unequal Sample Sizes

1 ### DGP with one small group and one large , and skew.

2 n1 <- 30

3 n2 <- 1000

4 alpha <- .2

5 beta <- 20

6 ## Plot density

7 plot(seq(0, 1, 0.01) , dbeta(seq (0 ,1 ,0.01), alpha , beta), type="l")

8 ## Simulations

9 sims <- 10000

10 ps <- rep(NA, sims)

11 set.seed (1)

12 for (i in 1:sims){

13 ys <- rbeta((n1 + n2), 0.1, 5) ## beta

14 zs <- sample(c(rep(1, n1), rep(0, n2)), replace=FALSE)

15 ps[i] <- as.numeric(t.test(ys ~ zs , var.equal=FALSE)[3]) ## Welch/Neyman

16 }

17 ps <- ps[!is.na(ps)]

18 length(ps)

19 mean(ps < 0.01)

20 mean(ps < 0.05)

B Effect-Increasing Rank Statistics

Many statistics are effect increasing. In this appendix we first prove that a general class of

rank-based statistics is EI in the absence of ties, and then extend this results to the case of

ties for, the rank-sum and Stephenson rank-sum statistics, two primary statistics discussed

in the paper.
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Lemma 2. For continuous outcomes, statistics that can be represented as the difference in

a scaled sum of ranks as

T =
1

nT

∑
i

Wia(Ri)−
1

nC

∑
i

(1−Wi)a(Ri)

are effect increasing. Here the Ri being the ranks of the (adjusted) observed outcomes. The

a(·) is a mapping of these ranks Ri to some number that is increasing with the rank.

Proof: Consider two schedules S′ � S that are identical except that for some specific unit k

with Y ′k(1) ≤ Yk(1). Conceptually consider making S′ by reducing potential outcome Yk(1)

for some specific k, and leaving the other potential outcomes alone.

Now given any assignment vector W , we have Y obs
i , i = 1, . . . , n, and Ri, i = 1, . . . , n

the associated ranks. Assume no ties in ranks. By lowering Yk(1) to Y ′k(1) we potentially

could change some ranks. In particular, the rank of unit k could go down and if it does

the ranks of some other units would increase. Let G =
{
j : R′j > Rj and Wj = 1

}
be the

set of units in the treatment group with increased ranks. Let m denote the size of this

set. Let j1, . . . , jm be the indices of the units in G arranged in increasing order by rank,

so Rja < Rja+1 . Importantly, for any unit in G, we have a change of at most 1 rank, so

Rja+1 ≥ Rja + 1 ≥ R′ja , giving a(R′ja) ≤ a(Rja+1). Because no unit can increase its rank to

above Rk by reducing unit k we have R′jm ≤ Rk. Similarly, the reduced R′k must be less than

the rank of any unit in G, giving R′k ≤ Rj1 . This gives:

a(R′k) + a(R′j1) + . . .+ a(R′jm−1
) + a(R′jm) ≤ a(Rj1) + a(Rj2) + . . .+ a(Rjm) + a(Rk)

due to a pairwise comparison (the first elements of the two sums are ordered, the second,

etc., up to the mth).

This means that T ′ ≤ T because the treatment average decreases, and the control average

can only go up (those units impacted in the control group all have ranks that are larger).
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A similar argument shows that T ′ ≤ T if we consider a pair of potential-outcome schedules

where only a single control potential outcome is increased from S to S′.

Finally, take any two potential-outcome schedules S′ � S. Generate a chain of potential-

outcome schedules from S′ to S by changing one potential outcome at a time. For example,

the first step in the chain would be to modify S′ to S′′ so Y1(1)′′ = Y1(1) and all other

Y ′′i (z) = Y ′i (z). By transitivity along this sequence we finally have T ′ ≤ T for any W .

Therefore, T is potential outcomes monotonic. �

Examples. If a(r) = r we have the classic rank sum test. Similarly, if

a(r) =

(
r − 1

s− 1

)
for r ≥ s and a(r) = 0 otherwise

for some fixed s (representing how many subsets of size s can be formed where our unit with

rank r is biggest), we have the Stephenson Rank test.

Ties. Unfortunately, this general proof does not go through if there are ties. This is because

by lowering a potential outcome, an entire group of mid-ranks can shift. Consider the case

where the original ranks of treated units are 2, 2, 2, 8 and we lower the rank-8 so much that

it becomes rank 1. The other units then will have ranks 3, 3, 3 giving final ranks of 1, 3, 3, 3.

Now, if a(r) = 0 if r < 3 and 1 otherwise, the sum of the four goes from 1 to 3. The control

units are unaffected. This violates the monotonicity. Many specific rank based statistics are,

however, EI even in the presence of ties. This can be shown by direct proof. We next do

this for the rank-sum and the Stephenson rank-sum statistic.

The rank-sum test. Let

T (W,S, Hsδ) =
∑

Wirank(Y obs
i − δW obs

i )
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This statistic is equivalent to the Mann-Whitney statistic summing all pairs of treatment-

control observations with the treatment beating the control

TMW (W,S) =
∑
i,j

Wi(1−Wj)1
{
Y obs
i − δ ≥ Y obs

j

}
=
∑
i,j

Wi(1−Wj)1{Yi(1)− δ ≥ Yi(0)}

with 1{a ≤ b} equalling 1/2 if a = b.

Then, for any two potential-outcome schedules with S � S′ we have

1{Yi(1)− δ ≥ Yi(0)} ≤ 1{Y ′i (1)− δ ≥ Y ′i (0)}

since we are moving the left side up and the right side down, only increasing the chance of

having the left side be higher. Plugging this in to our sum of pairwise comparisons easily

obtains our result of TMW (W,S) ≤ TMW (W,S′).

The Stephenson rank test. Represent this statistic as a sum of indicators across all

subsets where the indicator is 1 if a treatment unit is (tied for) the largest. We have, letting

G indicate a size-s subset of unit indices and G the collection of all such G,

TS(W,S) =
∑
G∈G

HG

where

HG = max
i∈G

Wi s.t. Ỹi ≥ max
j∈G

Ỹj

with Ỹi being an adjusted outcome (i.e., imputed control outcome under the null). The

above simply says that HG is 1 if there is a treated unit that is (tied for) largest value in the

set G. Alternatively, substitute Y obs
i for Ỹi.

Then, for any two potential-outcome schedules with S � S′ and a given G we have HG

and H ′G with

HG ≤ H ′G
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since for any unit under treatment, Y obs
i can only be larger, and for control, smaller. There-

fore, for each subset where a treatment unit was largest for S, we will still see one being

largest for S′. These inequalities sum, giving TS ≤ T ′S for any W , which implies monotonicity.
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